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Abstract—In this paper, the Euler equations in conservative and 

integral forms are applied to the solution of the supersonic flow along 

a compression corner. Five artificial dissipation models are tested, 

aiming to identify the main vantages and disadvantages of each one. 

Three isotropic models based on the works of Azevedo, Mavriplis, 

and MacCormack and Baldwin are implemented. On the other hand, 

two anisotropic models based on the work of Turkel and Vatsa are 

studied. The isotropic models are scalar ones, whereas the anisotropic 

models are scalar and matrix ones. Such studies are performed on a 

finite volume and structured contexts, in two- and three-dimensional 

spaces. The algorithms to perform the numerical experiments are the 

MacCormack, second order, MacCormack, fourth order, and 

Jameson and Mavriplis, second order, in two-dimensions. In three-

dimensions, one studies the MacCormack, second order, and the 

Jameson and Mavriplis, second order. All schemes are predictor-

corrector or symmetrical ones. Convergence is accelerated to the 

steady state by a spatially variable time step procedure, which has 

provided excellent results as reported by Maciel. Good results are 

obtained by all models, especially for the matrix model, and are 

reported in this paper. 

 

Keywords—Artificial dissipation models, Anisotropic scalar and 

matrix models, Euler equations, Isotropic scalar models, Jameson and 

Mavriplis scheme, MacCormack scheme. 

I. INTRODUCTION 

RTIFICIAL dissipation is either explicitly added or 

naturally occurring in Computational Fluid Dynamic 

algorithms to provided convergence stability and suppress 

undesirable flow field oscillations. Solution accuracy depends 

on the proper amount of dissipation being added where 

required and not added where not required. For example, the 

numerical modeling of shock waves can require large levels of 

carefully constructed dissipation to prevent pre- and post-

shock oscillations. Care also must be taken in regions of 

viscous dominated flow to prevent artificial dissipation from 

dominating real viscosity and destroying prediction accuracy. 

Unfortunately, many applications have become so complicated 

that it is nearly impossible to determine if the proper amount 
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of artificial dissipation is being introduced into each area of 

the flow field. Today, studies of fundamental flow fields are 

still required to fully understand the effects of numerical 

dissipation on solutions accuracy. 

 In a detailed study of the grid requirements for viscous 

airfoil computations, [1] showed that numerical errors in drag 

can be high even on relatively fine grids. This represents an 

important impediment to the development of efficient flow 

solvers, as the grid requirements for accurate drag prediction 

are excessive, especially for three-dimensional computations. 

Several avenues are being explored to reduce numerical errors, 

such as solution-adaptive gridding, and higher-order 

discretizations. One area in which improvements are possible 

is in the method by which dissipation is included in the spatial 

discretization. 

 Several researchers have shown that the scalar artificial 

dissipation model commonly used with centered difference 

schemes can be a major source of numerical error, especially 

in laminar boundary layers and in drag prediction. Examples 

are given in [2-7]. This problem is reduced with upwind 

schemes and matrix dissipation. However, the scalar 

dissipation model is inexpensive and easy to implement. 

Consequently, some researchers have proposed scalings for the 

scalar dissipation model in an attempt to reduce numerical 

errors. These include scalings based on local Mach number 

and vorticity. However, these parameters are functions of the 

flow field only and do not account for the grid density. Since 

the amount of artificial dissipation needed is clearly dependent 

on the grid resolution, these scalings are neither general nor 

robust. 

In this paper, the Euler equations in conservative and 

integral forms are applied to the solution of the supersonic 

flow along a compression corner. Five artificial dissipation 

models are tested, aiming to identify the main vantages and 

disadvantages of each one. Three isotropic models based on 

the works of [8], [9], and [10] are implemented. On the other 

hand, two anisotropic models based on the work of [3] are 

studied. The isotropic models are scalar ones, whereas the 

anisotropic models are scalar and matrix ones. Such studies are 

performed on a finite volume and structured contexts, in two- 

and three-dimensional spaces. The algorithms to perform the 

numerical experiments are the [11], second order, the [12], 

fourth order, and the [13], second order, in two-dimensions. In 

three-dimensions, one studies the [11], second order, and the 

[13], second order. All schemes are predictor-corrector or 
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symmetrical ones. Convergence is accelerated to the steady 

state by a spatially variable time step procedure, which has 

provided excellent results as reported by [14-15]. Good results 

are obtained by all models, especially for the matrix model, 

and are reported in this paper. 

II. EULER EQUATIONS IN 2D 

The fluid movement is described by the Euler equations, 

which express the conservation of mass, of linear momentum 

and of energy to an inviscid, heat non-conductor and 

compressible mean, in the absence of external forces. In the 

integral and conservative forms, these equations can be 

represented by: 
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where Q is written to a Cartesian system, V is a cell volume, nx 

and ny are the components of the normal unity vector to the 

flux face, S is the surface area and Ee and Fe represent the 

components of the convective flux vector. Q, Ee and Fe are 

represented by: 
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being  the fluid density; u and v the Cartesian components of 

the velocity vector in the x and y directions, respectively; e the 

total energy per unity volume of the fluid mean; and p the 

static pressure of the fluid mean. 

 The Euler equations were nondimensionalized in relation to 

the freestream density, , and in relation to the freestream 

speed of sound, a. The matrix system of the Euler equations is 

closed with the state equation of a perfect gas: 

 

                   )vu(5.0-e)1-(p 22                    (3) 

 

and   being the ratio of specific heats. The total enthalpy is 

determined by ( ) ρp+e=H . 

III. EULER EQUATIONS IN 3D 

The fluid movement is described by the Euler equations, 

which express the conservation of mass, of momentum and of 

energy to an inviscid, heat non-conductor and compressible 

mean, in the absence of external forces. In the integral and 

conservative forms, these equations can be represented by: 
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where nx, ny and nz are components of the normal unity 

vector to the flux face; and Ee, Fe and Ge are the components 

of the convective flux vector. The vectors Q, Ee, Fe and Ge 

are represented by: 
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where u, v and w are the Cartesian components of the velocity 

vector in the x, y and z directions, respectively. The matrix 

system of Euler equations is closed with the state equation of a 

perfect gas, similar to Eq. (3). 

IV. ARTIFICIAL DISSIPATION MODELS IN 2D 

The artificial dissipation models implemented in the [11-13] 

algorithms are based on the works of [3, 8-10] and have the 

following structure: 

 

       ( ) ( ) ( ) ( ) ( )
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4
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2

j,i Qd-Qd=QD ,              (6)  

with: 
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named the undivided Laplacian operator, responsible by the 

numerical stability in presence of shock waves; and 
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named the bi-harmonic operator, responsible by the 

background stability (odd-even instabilities, for instance). In 

this last term, 
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In the d(4) operator, ji

2Q ,  is extrapolated from your 

neighbour cell every time that such one represent an especial 

boundary layer cell, recognized in the CFD literature as 

“ghost” cell. The  terms are defined, for instance, as: 
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in which: 
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represents a pressure sensor employed to identify regions of 

high gradients. Each time that a neighbour cell represent a 

ghost cell, it is assumed that, for instance, j,ighost ν=ν . The 

Ai,j terms define the particular artificial dissipation operator. 

Five models were studied in this work: 

 

(a) Artificial dissipation operator of [8] / Scalar, non-linear, 

and isotropic model: 

 In this case, the Ai,j terms represent the sum of the 

contributions of the maximum normal eigenvalue associated to 

the flux interface of the Euler equations, integrated along each 

cell face. Based on [8] work, these terms are defined as: 
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where “a” represents the sound speed and the interface 

properties are evaluated by arithmetical average. The K
(2)

 and 

K
(4)

 constants have typical values of 1/4 and 3/256, 

respectively. 

 

(b) Artificial dissipation model of [9] / Scalar, non-linear, and 

isotropic model: 

 In the model proposed by [9], the Ai,j weighting term is 

defined as follows:  

 

                             jijiji tVA ,,,  ,                    (13) 

 
which represents a scaling fator, according to the structured 

mesh context, with the desired behavior to the artificial 

dissipation term: (a) bigger volumes result in bigger values of 

dissipation term; (b) smaller t’s result in bigger values of the 

scaling term. The other parameters maintain unaltered. The 

K
(2)

 and K
(4)

 constants have typical values of 1/4 and 3/256, 

respectively. 

 

(c) Artificial dissipation model of [10] / Scalar, non-linear, and 

isotropic model: 
 In this case, the Ai,j terms are vectors and represent the 

contributions of the maximum normal eigenvalue associated to 

the flux interface of the Euler equations, integrated long each 

cell face. Each normal eigenvalue is associated with a 

conservation equation. Only the non-linear dissipation is 

considered. Based on [10] work, these terms are defined as: 
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with the  terms defined, as for example: 
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The K
(2)

 constant has a typical value of 1/2. In the present 

work, the [10] dissipation model is added in both predictor and 

corrector steps of the [11,12] schemes. 

 

(d) Artificial dissipation model of [3] / Scalar, non-linear, and 

anisotropic model: 

 The aforementioned artificial dissipation models present 

the characteristic of being isotropic. In words, the dissipation 

introduced artificially in a given coordinate direction to 

stabilize the scheme weights equally the phenomena originated 

from all directions, having not a more significant weighting 

from the particular direction under study. The dissipation is 

clearly isotropic. The scalar, non-linear and anisotropic 

artificial dissipation model of [3] aims to provide a numerical 

attenuation that considers with bigger weight the propagation 

information effects associated to the characteristic maximum 

eigenvalue from the coordinate direction under study. 

Basically, such artificial dissipation model differs from the 

non-linear, isotropic models of [8-10] only in the 

determination of the weighting term of the dissipation 

operator. 
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To this artificial dissipation model, the recommended values of 

K
(2)

 e K
(4)

 by [3] are 1/2 and 1/64, respectively. 

 

(e) Artificial dissipation model of [3] / Matrix, non-linear, and 

anisotropic model: 

The anisotropic, non-linear and matrix artificial dissipation 

model of [3] considers different quantities of numerical 

attenuation applied to each conservation equation in its 

discrete form aiming to provide smaller artificial dissipation, 

as preconized by the authors. In this case, the weighting term 

or the scalar scaling is replaced by a matrix term defined by 

the “modulus” of the Jacobian flux matrices. Mathematically, 

it can be represented by: 
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The right and left eigenvectors of the inviscid Jacobian matrix, 

which form the R and R-1 matrices, are given by: 
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where 
'

xh and 
'

yh  are normalized metric terms. In practice, 

the modulus of the inviscid Jacobian matrix eigenvalues can be 

equal to zero close to stagnation points or sonic points, 

resulting in dissipation absence. To avoid such problem, these 

parameters are limited by the expressions below: 
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in which the value  = 0.5 was employed in this work. 

V. ARTIFICIAL DISSIPATION MODELS IN 3D 

The artificial dissipation models implemented in the [11,13] 

algorithms are based on the works of [3, 8-10] and have the 

following structure: 
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2

2/1-k,j,i Q-QAA5.0
 

    k,j,i1k,j,i1k,j,ik,j,i

2

2/1k,j,i Q-QAA5.0   , (25) 
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named the undivided Laplacian operator, responsible by the 

numerical stability in presence of shock waves; and 

 
       k,j,i

2

k,1-j,i

2

k,1-j,ik,j,i

4

k,2/1-j,i

4 Q∇-Q∇AA5.0d    

      k,j,i

2

k,j,1i

2

k,j,1ik,j,i

4

k,j,2/1i Q∇-Q∇AA5.0    

      k,j,i

2

k,1j,i

2

k,1j,ik,j,i

4

k,2/1j,i Q∇-Q∇AA5.0  

     k,j,i

2

k,j,1-i

2

k,j,1-ik,j,i

4

k,j,2/1-i Q∇-Q∇AA5.0  

      k,j,i

2

1k,j,i

2

1k,j,ik,j,i

4

2/1-k,j,i Q∇-Q∇AA5.0  

    k,j,i

2

1k,j,i

2

1k,j,ik,j,i

4

2/1k,j,i Q∇-Q∇AA5.0   ,  (26) 

 

named the bi-harmonic operator, responsible by the 

background stability (odd-even instabilities, for instance). In 

this last term, 
 

     k,j,ik,j,1ik,j,ik,1-j,ik,j,i

2 Q-QQ-QQ∇  

    k,j,ik,j,1-ik,j,ik,1j,i Q-QQ-Q  

                  k,j,i1k,j,ik,j,i1k,j,i Q-QQ-Q   .         (27) 

 

In the d
(4)

 operator, k,j,i

2Q  is extrapolated from your 

neighbour cell every time that such one represent an especial 

boundary layer cell, recognized in the CFD literature as 

“ghost” cell. The  terms are defined, for instance, as: 
 

         
     k,1j,ik,j,i

22

k,2/1j,i ,MAXK      and 

            
       2

k,2/1j,i

44

k,2/1j,i K,0MAX   ,         (28) 

 

in which: 

 

   k,j,ik,1j,ik,j,ik,j,1ik,j,ik,1j,ik,j,i p-pp-pp-p

k,j,i1k,j,ik,j,i1k,j,ik,j,ik,j,1i pppppp  

 k,j,i1k,j,i1k,j,ik,j,1-ik,1j,ik,j,1ik,1-j,i p6pppppp   ,  (29) 

 

represents a pressure sensor employed to identify regions of 

high gradients. Each time that a neighbour cell represent a 

ghost cell, it is assumed that, for instance, k,j,ighost  . The 

Ai,j,k terms define the particular artificial dissipation operator. 

Five models were studied in this work: 

 

(a) Artificial dissipation operator of [8] / Scalar, non-linear, 

and isotropic model: 

 As mentioned in the 2D dissipation models, the Ai,j,k 

terms represent the sum of the contributions of the maximum 

normal eigenvalue associated to the flux interface of the Euler 

equations, integrated along each cell face. Based on [8] work, 

these terms are defined as: 
 

( ) +S+S+Sa+Sw+Sv+Su=A
5.0

k,2/1-j,i

2
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2

y

2

xint
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2
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zintyintxint  

( ) +S+S+Sa+Sw+Sv+Su
5.0
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2
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2

xint
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zintyintxint

( ) +S+S+Sa+Sw+Sv+Su
5.0
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2

z

2

y

2

xint
k,j,2/1-i

zintyintxint

( ) +S+S+Sa+Sw+Sv+Su
5.0

2/1-k,j,i

2

z

2

y

2

xint
2/1-k,j,i

zintyintxint  

( )S+S+Sa+Sw+Sv+Su
5.0

2/1+k,j,i

2

z

2

y

2

xint
2/1+k,j,i

zintyintxint ,  (30) 

 

where the interface variables are defined by arithmetical 

average. 

 

(b) Artificial dissipation model of [9] / Scalar, non-linear, and 

isotropic model: 

 In this model, the Ai,j,k weighting term is defined as 

follows: 

 

                         k,j,ik,j,ik,j,i tΔV=A ,                      (31) 

 
which represents a scaling fator, according to the structured 

mesh context, with the desired behavior to the artificial 

dissipation term. 

 

(c) Artificial dissipation model of [10] / Scalar, non-linear, and 

isotropic model: 

 As seen in the two-dimensional case, the Ai,j,k terms are 

vectors and represent the contributions of the maximum 

normal eigenvalue associated to the flux interface of the Euler 

equations, integrated long each cell face. Based on [10] work, 

these terms are defined as: 

 

       ( )
k,2/1-j,i

k,2/1-j,i
zyx

)1(

k,j,i Sa+wn+vn+un=A ; 

       ( )
k,j,2/1+i

k,j,2/1+i
zyx

)2(

k,j,i Sa+wn+vn+un=A ; 

       ( )
k,2/1+j,i

k,2/1+j,i
zyx

)3(

k,j,i Sa+wn+vn+un=A ; 

       ( )
k,j,2/1-i

k,j,2/1-i
zyx

)4(

k,j,i Sa+wn+vn+un=A ; 

       ( )
2/1-k,j,i

2/1-k,j,i
zyx

)5(

k,j,i Sa+wn+vn+un=A ; 

        ( )
2/1+k,j,i

2/1+k,j,i
zyx

)6(

k,j,i Sa+wn+vn+un=A ,      (32) 

 

with the  terms defined, as for example: 
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( ) ( )

2

ν+ν
K=ε

k,1-j,ik,j,i22

k,2/1-j,i .               (33) 

 

 (d) Artificial dissipation model of [3] / Scalar, non-linear, and 

anisotropic model: 

 The [3] scalar, non-linear and anisotropic model of [3] is 

defined in the last section and corresponds to the contribution 

of the normal eigenvalues to each cell face. The anisotropic 

property of this model is due to the different weights that are 

considered in its definition. The normal eigenvalues are the 

weighting terms. 
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       ( )
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       ( )
2/1+k,j,i

2/1+k,j,i
zyx2/1+k,j,iζ

Sa+wn+vn+un=λ .   (36) 

 
(e) Artificial dissipation model of [3] / Matrix, non-linear, and 

anisotropic model: 

 The anisotropic, non-linear and matrix artificial dissipation 

model of [3] considers different quantities of numerical 

attenuation applied to each conservation equation in its 

discrete form aiming to provide smaller artificial dissipation, 

as preconized by the authors. In this case, the weighting term 

or the scalar scaling is replaced by a matrix term defined by 

the “modulus” of the Jacobian flux matrices. Mathematically, 

it can be represented by: 

 

           ( )
k,j,2/1+i

1-

ξξξk,j,2/1+iξ RλR=Â=A ;          (37) 

           ( )
k,2/1+j,i

1-

ηηηk,2/1+j,iη RλR=B̂=A ;          (38) 

           ( )
2/1+k,j,i

1-

ζζζ2/1+k,j,iζ RλR=Ĉ=A .           (39) 

 

The right and left eigenvectors of the inviscid Jacobian 

matrix, which form the R and R
-1

 matrices, are given by: 
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where 
'

xh , 
'

yh  and 
'

zh  are normalized metric terms. In 

practice, the modulus of the inviscid Jacobian matrix 

eigenvalues can be equal to zero close to stagnation points or 

sonic points, resulting in dissipation absence. To avoid such 

problem, these parameters are limited by the expressions 

below: 

 

                     ,MAX
k,j,2/1i

;             (42) 

                      ,MAX
k,2/1j,i

,             (43) 

                     ,MAX
2/1k,j,i

,             (44) 

 

in which the value  = 0.5 was employed in this work. 

VI. ALGORITHMS IN 2D 

A. MacCormack, 2
nd

 Order 

Using finite volumes and applying the Green theorem to 

Equation (1), it is possible to write that: 
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                 .dSnFV1tQ
S

j,ij,ij,ij,i  


              (45) 

 
In the discretization of the surface integral, the Eq. (45) can 

be rewritten as: 

 

      j,2/1i2/1j,ij,ij,i SFSFV1-dtdQ


 

                          j,2/1i2/1j,i SFSF  


.                (46) 

 
Discretizing Equation (46) in time using the Euler explicit 

method, results in: 

 

  


j,2/1i2/1-j,ij,ij,i
n

j,i
1n

j,i )SF()SF(Vt-QQ            

                   nj,2/1-i2/1j,i )SF()SF(   .                  (47) 

 
The time integration is now divided in two steps: one 

predictor and the other corrector. In the predictor step, the flux 

terms are calculated using the properties of the forward cell in 

relation to the flux interface. In the corrector step, the 

properties of the backward cell in relation to the flux interface 

are used. With this procedure, the scheme is second order 

accurate in space and time. Hence, the [11] algorithm, based 

on a finite volume formulation, is described as follows. 

Predictor step: 

 

    
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      n
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; 

                   ;QQQ n

j,i

n

j,i

1n

j,ip 


                      (48) 

 
Corrector step: 

 

    
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j,i ,   (49) 

 
where to guarantee numerical stability to the [11] scheme, an 

artificial dissipation operator, D, is subtracted from the RHS 

flux terms in the corrector step (see [16]) aiming to eliminate 

instabilities originated from shock waves. The operator is of 
)4(

j,i
)2(

j,i ddD   type, defined in section 3. 

B. MacCormack, 4
th

 Order 

[12] extended the standard MacCormack scheme (2nd order 

accurate in both space and time) to a spatially fourth order 

accurate scheme. This scheme has a predictor and a corrector 

stage and the predictor step is described as follows. 

 
Predictor step: 
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Corrector step: 
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
; 

 

 










 1n

j,i

j,i

j,i1n

j,ip

n

j,i

1n

j,i nd2Flux7
V6

t
QQ5.0Q  

                   1n

j,ith4Flux


                                    (51) 

 
This scheme is second order accurate in time and becomes 

fourth order accurate in the spatial derivatives when alternated 

with symmetric variants ([12,19]). Consider L1 defined as a 

one dimensional operator with a forward discretization in the 

predictor and a backward discretization in the corrector. Its 

symmetric variant L2 uses a backward discretization in the 

predictor and a forward discretization in the corrector. 

Therefore to ensure the fourth order spatial accuracy, the 

sweeps are arranged in our computations as 
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n

j,i1

1+n

j,i QL=Q                            (52) 

                               
1+n

j,i2

2+n

j,i QL=Q                         (53) 

 
In the present study, the corrector step is modified to consider 

the artificial dissipation operator as: 

 

 










 1n

j,i

j,i

j,i1n

j,ip

n

j,i

1n

j,i nd2Flux7
V6

t
QQ5.0Q  

                   1n

j,i

1n

j,i Dth4Flux 
                        (54) 

 
where D is the artificial dissipation operator. 

C. Jameson and Mavriplis, 2
nd

 Order 

Equation (46) can be rewritten following a structured 

discretization context ([13,17]) as: 

 

                       ( ) 0=)Q(C+dtQVd j,ij,ij,i ,            (55) 

 
where: 

 

[ ]+S)Q(F+S)Q(E=)Q(C
2/1-j,i2/1-j,i y2/1-j,iex2/1-j,iej,i  

[ ]+S)Q(F+S)Q(E
j,2/1+ij,2/1+i yj,2/1+iexj,2/1+ie

[ ]+S)Q(F+S)Q(E
2/1+j,i2/1+j,i y2/1+j,iex2/1+j,ie  

 
j,2/1-ij,2/1i yj,2/1-iexj,2/1-ie S)Q(FS)Q(E 


                  (56) 

 
is the discrete approximation of the flux integral of Eq. (46). In 

this work, it was adopted that, for example, the values of 

primitive variables at the (i,j-1/2) flux interface are obtained 

from the arithmetical average between the values of the 

primitive variables in the (i,j) volume and in the (i,j-1) volume. 

The spatial discretization proposed by the authors is 

equivalent to a symmetrical scheme with second order 

accuracy, on a finite difference context. The introduction of an 

artificial dissipation operator “D” is necessary to guarantee the 

numerical stability of the scheme in the presence of, for 

example, odd-even uncoupled solutions and nonlinear 

instabilities, like shock waves. So, Equation (55) is rewritten 

as: 

 

               0)Q(D-)Q(CdtQVd j,ij,ij,ij,i  .       (57) 

 
The time integration is performed using a hybrid explicit 

Runge-Kutta method of five stages, with second order 

accuracy, and can be represented in general form as: 

 

         
)l(
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)1n(
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j,i

)0(
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QQ

QD-QCVt-QQ

QQ









,  (58) 

 

where l = 1,...,5; m = 0 until 1; 1 = 1/4, 2 = 1/6, 3 = 3/8, 4 

= 1/2 and 5 = 1. [13] suggests that the artificial dissipation 

operator should only be evaluated in the first two stages when 

the Euler equations were solved (m = 0, l = 1 and m = 1, l = 2). 

This procedure aims CPU time economy and also better 

smoothing of the numerical instabilities of the discretization 

based on the hyperbolic characteristics of the Euler equations. 

VII. ALGORITHMS IN 3D 

A. MacCormack, 2
nd

 Order 

The explicit time march, using the explicit Euler method 

applied to Eq. (4), leads to the following expression: 

 

  

k,j,iS
k,j,ik,j,ik,j,ik,j,i

n

k,j,i

1n

k,j,i dS)nP(VtQQ


. (59) 

 

 In the discretization of the surface integral, the Eq. (59) 

can be rewritten as: 
 

  



k,j,2/1ik,2/1-j,ik,j,ik,j,i

n

k,j,i

1n

k,j,i )SP()SP(Vt-QQ


 

  k,j,2/1-ik,2/1j,i )SP()SP(


 

                   n2/1k,j,i2/1-k,j,i )SP()SP( 


 .          (60) 

 
Discretizing space and time together, following a Lax-

Wendroff type method, dividing the resultant algorithm in two 

integration time steps (one predictor and the other corrector) 

and adopting a forward spatial discretization to the predictor 

step and a backward spatial discretization to the corrector step, 

it is possible to obtain the [11] algorithm, based on a finite 

volume formulation, as follows bellow: 

 
Predictor step: 

 
   k,2/1-j,i

k,j,i
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.                                          (61) 
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Corrector step: 
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An artificial dissipation operator of second and fourth 

differences (see [16]) is subtracted from the RHS flux terms in 

the corrector step aiming to provide numerical stability in the 

proximities of shock waves and uncoupled solutions. 

B. Jameson and Mavriplis, 2
nd

 Order 

The Equation (4) can be rewritten as follows: 

 

    k,j,2/1ik,2/1j,ik,j,ik,j,i )SP()SP(V1dt)Q(d


 

  k,j,2/1ik,2/1j,i )SP()SP(


 

              0)SP()SP(
n

2/1k,j,i2/1k,j,i  


.         (63) 

 
The inviscid flux vectors in each flux interface are 

implemented considering the arithmetical average of the 

primitive variables in each face; in other words, to the flux 

face (i,j-1/2,k) is possible to determine the primitive variables 

at interface using arithmetical average between values of the 

primitive variable of the volumes (i,j-1,k) and (i,j,k): 

 

 k,j,ik,1j,ik,2/1j,i 5.0   ; 

 k,j,ik,1j,ik,2/1j,i uu5.0u   ; 

 k,j,ik,1j,ik,2/1j,i vv5.0v   ; 

 k,j,ik,1j,ik,2/1j,i ww5.0w   ; 

                      k,j,ik,1j,ik,2/1j,i ee5.0e   .             (64) 

 
The spatial discretization proposed by the authors is 

symmetrical on the context of a finite difference technique. 

With the purpose of avoiding uncoupled solutions, nonlinear 

instabilities (shock waves), etc., it is explicitly introduced an 

artificial dissipation operator “D” to provide scheme numerical 

stability. So, Equation (63) can be rewritten as: 

 

    0)Q(D)Q(CV1dt)Q(d k,j,ik,j,ik,j,ik,j,i  , (65) 

 
where: 

 

   k,j,2/1ik,2/1j,ik,j,i )SP()SP()Q(C  

    n2/1k,j,i2/1k,j,ik,j,2/1ik,2/1j,i )SP()SP()SP()SP(  
 
(66)

 
 

is the flux integral to the cell (i,j,k). 

 The time integration is performed using a hybrid explicit 

Runge-Kutta method with first or second order of accuracy. 

The more general form of this method is presented below, 

where the values of the  coefficients are chosen to provide 

first or second order of time accuracy, as well as to invest 

certain properties to the scheme which benefit the use of the 

“multigrid” convergence acceleration technique. 
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, (67) 

 
where “l” varies from 1 to 5; “m” varies according to the type 

of the studied flow (inviscid or viscous). As reported in section 

6.3, [13] suggests that the artificial dissipation should be 

evaluated in the first two stages when the Euler equations were 

solved (m = 1 and 2, in the five stage case). This procedure 

aims to allow a CPU time economy and also better smooth of 

the numerical instabilities of the discretization based on the 

hyperbolic characteristics of the Euler equations. The  

numbers assume the following values: 1 = 1/4, 2 = 1/6, 3 = 

3/8, 4 = 1/2, 5 = 1.0. 

VIII. SPATIALLY VARIABLE TIME STEP 

The idea of a spatially variable time step consists in keeping 

constant a CFL number in the calculation domain and to 

guarantee time steps appropriated to each mesh region during 

the convergence process. The spatially variable time step can 

be defined in 3D by: 

 

                              
 

 
k,j,i

k,j,i

k,j,i
aq

sCFL
t




 ,              (68) 

 

where CFL is the Courant number to method stability; 

  k,j,is  is a characteristic length of information transport; 

and  
k,j,i

aq   is the maximum characteristic velocity of 

information transport, where “a” is the speed of sound. The 

characteristic length of information transport,   k,j,is , can 

be determined by: 

 

                      
k,j,iMINMINk,j,i C,lMINs   ,      (69) 
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where lMIN is the minimum side length which forms a 

computational cell and CMIN is the minimum distance of 

baricenters between the computational cell and its neighbours, 

in three dimensions, or the minimum distance of centroids 

beteween the computational cell and its neighbours, in two-

dimensions. The maximum characteristic speed of information 

transport is defined by  
k,j,i

aq  , with 
222 wvuq  , 

in three-dimensions, or 
22 vuq  , in two-dimensions. 

IX. INITIAL AND BOUNDARY CONDITIONS 

A. Initial Condition 

To the physical problems studied in this work, freestream 

flow values are adopted for all properties as initial condition, 

in the whole calculation domain ([13,18]). Therefore, the 

vector of conserved variables for two-dimensions is defined 

as: 

 
T

2

j,i M5.0
)1(

1
sinMcosM1Q












  ,  (70) 

 

being M the freestream flow Mach number and  the flow 

attack angle. 

B. Boundary Conditions 

The boundary conditions are basically of four types: solid 

wall, entrance, exit and lateral planes. These conditions are 

implemented in special cells named ghost cells. 

Wall condition: This condition imposes the flow tangency at 

the solid wall. This condition is satisfied considering the wall 

tangent velocity component of the ghost volume as equals to 

the respective velocity component of its real neighbour cell. At 

the same way, the wall normal velocity component of the ghost 

cell is equaled in value, but with opposite signal, to the 

respective velocity component of the real neighbour cell. 

 The pressure gradient normal to the wall is assumed be 

equal to zero, following an inviscid formulation. The same 

hypothesis is applied to the temperature gradient normal to the 

wall, considering adiabatic wall. The ghost volume density and 

pressure are extrapolated from the respective values of the real 

neighbour volume (zero order extrapolation), with these two 

conditions. The total energy is obtained by the state equation 

of a perfect gas. 

 

Entrance condition: 

(1) Subsonic flow: Three properties are specified and one is 

extrapolated, based on analysis of information propagation 

along characteristic directions in the calculation domain ([18]). 

In other words, three characteristic directions of information 

propagation point inward the computational domain and 

should be specified. Only the characteristic direction 

associated to the “(qn-a)” velocity cannot be specified and 

should be determined by interior information of the calculation 

domain. The pressure was the extrapolated variable from the 

real neighbour volume, to the studied problems. Density and 

velocity components had their values determined by the 

freestream flow properties. The total energy per unity fluid 

volume is determined by the state equation of a perfect gas. 

For three-dimensions, four properties are specified and one is 

extrapolated. The pressure is the extrapolated variable, 

whereas the density and velocity components are fixed. 

(2) Supersonic flow: All variables are fixed with their 

freestream flow values. 

 

Exit condition: 

(1) Subsonic flow: Three characteristic directions of 

information propagation point outward the computational 

domain and should be extrapolated from interior information 

([18]). The characteristic direction associated to the “(qn-a)” 

velocity should be specified because it penetrates the 

calculation domain. In this case, the ghost volume’s pressure is 

specified by its freestream value. Density and velocity 

components are extrapolated and the total energy is obtained 

by the state equation of a perfect gas. For three-dimensions, 

four properties are extrapolated, density and velocity 

components, and the pressure is fixed. 

(2) Supersonic flow: All variables are extrapolated from the 

interior domain due to the fact that all four, or five, 

characteristic directions of information propagation of the 

Euler equations point outward the calculation domain and, 

with it, nothing can be fixed. 

 

Lateral Planes: The lateral boundaries in three-dimensions 

consider flow tangency condition at these frontiers. Pressure 

and density are extrapolated from the internal flow. Energy is 

obtained from the perfect gas equation. 

X. RESULTS 

A. Geometry and Meshes 

 Figure 1 exhibits the compression corner configuration 

employed in this work. This physical problem presents a 

convex corner which generates an oblique shock wave 

extending from the corner. Figure 2 shows the two-

dimensional mesh, whereas Fig. 3 shows the three-dimensional 

mesh. The former is constituted of 70x50 points, which is 

equivalent of being composed of 3,381 rectangular cells and 

3,500 nodes, equally spaced. On the other hand, the latter is 

constituted of 70x50x10 points, which is equivalent of being 

composed of 30,429 hexahedron cells and 35,000 nodes, 

equally spaced. 

 
Figure 1. Corner configuration (2D and 3D). 
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Figure 2. Two-dimensional corner mesh. 

 
Figure 3. Three-dimensional corner mesh. 

 

B. Two-Dimensional Results 

Figures 4 to 6 shows the pressure contours obtained by the 

[11], [12] and [13] numerical schemes, respectively, as using 

the [8] artificial dissipation model. As can be observed, the 

[12] solution presents some pressure oscillations close to the 

corner. However, the minimum shock wave thickness is 

captured by the [12] scheme. The most severe pressure field is 

obtained by the [13] scheme. 

 
Figure 4. Pressure contours ([11]-[8]). 

 
Figure 5. Pressure contours ([12]-[8]). 

 
Figure 6. Pressure contours ([13]-[8]). 

 
Figure 7. Pressure distributions at wall (Mav). 

 

Figure 7 presents the pressure distributions at the wall 

obtained by the [11-13] numerical schemes as using the [8] 

dissipation operator. The best pressure distribution is that 

obtained by the [13] algorithm, in spite of the oscillation at the 

corner. 
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Figure 8. Pressure contours ([11]-[9]). 

 
Figure 9. Pressure contours ([12]-[9]). 

 

Figures 8 to 10 exhibit the pressure contours obtained by the 

[11], [12] and [13] numerical schemes. The most severe 

pressure field is obtained by the [13] scheme. Again, the 

minimum shock wave thickness is obtained by the [12] 

scheme, which presents small pressure oscillations close to the 

corner. 

Figure 11 shows the wall pressure distributions of the three 

schemes as using the [9] artificial dissipation model. Again, 

the [13] algorithm predicts the best pressure distribution at the 

wall. The [12] scheme predicts this distribution with an 

oscillation at the corner. 

Figures 12 to 14 present the pressure contours resulting from 

the [11], [12] and [13] schemes, respectively, as using the [10] 

dissipation model. The [12] solution presents pressure 

oscillations ahead of the corner, whereas the [13] solution 

presents problems at the corner top. The minimum shock wave 

thickness is captured by all three schemes. The most severe 

pressure field is obtained by the [12] algorithm. 

 
Figure 10. Pressure contours ([13]-[9]). 

 
Figure 11. Pressure distributions at wall (Az). 

 
Figure 12. Pressure contours ([11]-[10]). 
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Figure 13. Pressure contours ([12]-[10]). 

 
Figure 14. Pressure contours ([13]-[10]). 

 

Figure 15 shows the wall pressure distribution generated 

along the compression corner by the [11], [12] and [13] 

schemes, respectively, as using the [10] dissipation model. The 

best pressure distribution, close to the pressure profile, is due 

to [12] scheme. 

 
Figure 15. Pressure distributions at wall (MB). 

 
Figure 16. Pressure contours ([11]-[3]-S). 

 
Figure 17. Pressure contours ([12]-[3]-S). 

 
Figure 18. Pressure contours ([13]-[3]-S). 

 

Figures 16 to 18 exhibit the pressure contours generated at 

the compression corner obtained by the [11-13] schemes, 

respectively. The lowest shock wave thickness is obtained by 

the [12] scheme. It seems that the fourth order accuracy of this 
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scheme really provides good solution characteristics in 

qualitative terms, capturing the best shock wave thickness. It is 

also obvious that the dissipation model has a great influence in 

this solution. It is clear that the anisotropic properties of this 

dissipation model is the great responsible to so good behavior 

of the [12] scheme. The [11] scheme presents oscillations 

close to the corner and the [13] scheme presents thicker shock 

wave thickness, using this same dissipation model. 

 
Figure 19. Pressure distributions at wall (TVE). 

 

Therefore, the [12] scheme has its merits to capture 

appropriately the shock wave. Figure 19 exhibits the wall 

pressure distributions of the three schemes along the 

compression corner. The best behavior is due to the [11] 

scheme as using the [3] scalar dissipation model. Some 

overshoots and undershoots are presented in the solutions and 

the best behavior is observed with the [11] algorithm. 

Figures 20 to 22 present the pressure contours obtained by 

the [11-13] algorithms as using the [3] matrix model. The best 

prediction of the shock wave thickness is again observed with 

the [12] algorithm. In all solutions oscillations are present. 

All schemes present the minimum shock wave thickness in 

relation to the other models. The matrix model is the best in 

this prediction. 

 
Figure 20. Pressure contours ([11]-[3]-M). 

 
Figure 21. Pressure contours ([12]-[3]-M). 

 
Figure 22. Pressure contours ([13]-[3]-M). 

 

Figure 23 shows the pressure distributions at the wall 

generated by the [11], [12] and [13] schemes, respectively, as 

using the [3] matrix model. The best pressure distribution is 

due to the [11] scheme. All schemes present overshoots and 

undershoots. 

 
Figure 23. Pressure distributions at wall (TVM). 
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As conclusion in qualitative terms, considering two-

dimensional simulations, the [12] scheme was the best in the 

prediction of shock wave thickness. Moreover, the matrix 

model is the best in the prediction of the shock wave thickness. 

The best wall pressure distribution was due to [11]. 

 

C. Three-Dimensional Results 

Figures 24 and 25 exhibit the pressure contours obtained by 

the [11,13] algorithms, respectively. Both solutions are clear. 

Only small oscillations are perceptible close to the corner. 

Both solutions present the same shock wave thickness.  

 
Figure 24. Pressure contours ([11]-[8]). 

 

The most severe pressure field is due to [13] scheme. Figure 

26 exhibits the wall pressure distributions obtained by the [11] 

and [13] schemes. Both solutions are very close, but the [11] 

scheme is better than the [13] scheme, presenting minimum 

undershoots and overshoots. 

 Figures 27 and 28 shows the pressure contours obtained by 

the [11,13] schemes, respectively, as using the [9] dissipation 

model. Both solutions present the same shock wave thickness. 

The most severe pressure field is due to [13] scheme. 

 
Figure 25. Pressure contours ([13]-[8]). 

 
Figure 26. Pressure distributions at wall (Mav). 

 
Figure 27. Pressure contours ([11]-[9]). 

 
Figure 28. Pressure contours ([13]-[9]). 

 
Figure 29 presents the wall pressure distributions along the 

compression corner obtained by the [11] and [13] algorithms 

as using the [9] dissipation model. The best pressure profile is 

due to [13] algorithm. 
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Figure 29. Pressure distributions at wall (Az). 

 
Figure 30. Pressure contours ([11]-[10]). 

 
Figure 31. Pressure contours ([13]-[10]). 

 
 Figures 30 and 31 exhibit the pressure contours obtained 

by the [11] and [13] schemes, respectively, as using the [10] 

dissipation model. Here is a new paradigm. The [10] 

dissipation model provides better shock wave thickness than 

the other models tested herein. Both solutions present this 

aspect, although the [13] solution presents pressure oscillations 

at the field. The most severe pressure field is due to [11] 

scheme. 
Figure 32 shows the wall pressure distributions along the 

compression corner generated by the [11,13] schemes. The 

better prediction is due to the [11] algorithm using this 

dissipation model. 

  
Figure 32. Pressure distributions at wall (MB). 

 
 Figures 33 and 34 exhibit the pressure contours generated 

by the [11,13] schemes, respectively, as using the [3] scalar 

dissipation model. Only the [11] solution presents 

homogeneity properties in the shock wave region. On the other 

hand, the [13] solution spread out the post-shock properties in 

the field. The shock wave thicknesses of the [10] model are 

better than the present ones. The most severe pressure field is 

due to the [13] algorithm. 

 
Figure 33. Pressure contours ([11]-[3]-S). 

 

 Figure 35 shows the wall pressure distributions obtained by 

the [11] and [13] algorithms. Both solutions present under- and 

overshoots, but the best behavior is observed with the [11] 
scheme (minor oscillation sizes). 
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Figure 34. Pressure contours ([13]-[3]-S). 

 
Figure 35. Pressure distributions at wall (TVE). 

 
Figure 36. Pressure contours ([11]-[3]-M). 

 

 Figures 36 and 37 present the pressure contours generated 

by the [11] and by the [13] algorithms, respectively, as using 

the [3] matrix model. The shock wave thickness is minimum in 

both solutions, minimum than the other models, highlighting 

this artificial dissipation model as the best of the studied 

herein. Some pressure oscillations are present in both 

solutions, but the homogeneity property is better observed in 

the [11] solution. Figure 38 exhibit the wall pressure 

distributions along the compression corner obtained by [11,13] 

schemes. The better prediction is due to the [11] model. 

 
Figure 37. Pressure contours ([13]-[3]-M). 

 
Figure 38. Pressure distributions at wall (TVM). 

 

 As conclusion of the three-dimensional study, the best 

dissipation model to predict the minimum shock wave 

thickness was due to [3] matrix model. The best pressure 

profile was obtained in all cases by the [11] scheme. 

D. Quantitative Results 

One way to quantitatively verify if the solutions generated by 

each scheme are satisfactory consists in determining the shock 

angle of the oblique shock wave, , measured in relation to the 

initial direction of the flow field. [20] (pages 352 and 353) 

presents a diagram with values of the shock angle, , to 

oblique shock waves. The value of this angle is determined as 

function of the freestream Mach number and of the deflection 

angle of the flow after the shock wave, . To  = 10º (corner 

inclination angle) and to a freestream Mach number equals to 

3.0, it is possible to obtain from this diagram a value to  

equals to 27.5º. 
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Table 1. Shock angle and percentage errors. 

 

Case Scheme Model  () Error % 

2D [11] [8] 27.8 1.09 

2D [12] [8] 27.9 1.45 

2D [13] [8] 27.7 0.73 

2D [11] [9] 27.5 0.00 

2D [12] [9] 27.6 0.36 

2D [13] [9] 27.4 0.36 

2D [11] [10] 27.5 0.00 

2D [12] [10] 27.6 0.36 

2D [13] [10] 27.4 0.36 

2D [11] [3]-S 28.0 1.82 

2D [12] [3]-S 27.5 0.00 

2D [13] [3]-S 27.8 1.09 

2D [11] [3]-M 27.5 0.00 

2D [12] [3]-M 27.5 0.00 

2D [13] [3]-M 27.9 1.45 

3D [11] [8] 27.5 0.00 

3D [13] [8] 27.5 0.00 

3D [11] [9] 27.5 0.00 

3D [13] [9] 28.0 1.82 

3D [11] [10] 27.3 0.73 

3D [13] [10] 27.5 0.00 

3D [11] [3]-S 27.5 0.00 

3D [13] [3]-S 27.6 0.36 

3D [11] [3]-M 26.9 2.18 

3D [13] [3]-M 26.9 2.18 

 

Using a transfer in the pressure contours, it is possible to 

obtain the values of  to each scheme, as well the respective 

errors, shown in Tab. 1. For the three-dimensional case, the 

pressure contours were studied at the xy plane. 

 The best result for the two-dimensional case, considering 

each dissipation model, was due to the [3] matrix model 

because it reproduces the exact value of the shock angle in two 

solutions, [11] and [12] schemes, and presents a small error 

with the [13] scheme (< 1.50%). For the three-dimensional 

case, the best dissipation model was the [8] dissipation model 

because it reproduces the exact value in two solutions, [11] 

and [13] algorithms. The Turkel and Vatsa’s matrix model was 

the best in the two-dimensional case, whereas the Mavriplis’ 

model was the best in the three-dimensional case. The best 

scheme was the [12] algorithm in the two-dimensional case, 

whereas is the [11] algorithm in the three-dimensional case. In 

general, the errors obtained with the results were inferior to 

2.50%, which is an excellent result considering that the 

schemes are not of high resolution. 

XI. CONCLUSIONS 

In this paper, the Euler equations in conservative and 

integral forms are applied to the solution of the supersonic 

flow along a compression corner. Five artificial dissipation 

models are tested, aiming to identify the main vantages and 

disadvantages of each one. Three isotropic models based on 

the works of [8], [9], and [10] are implemented. On the other 

hand, two anisotropic models based on the work of [3] are 

studied. The isotropic models are scalar ones, whereas the 

anisotropic models are scalar and matrix ones. Such studies are 

performed on a finite volume and structured contexts, in two- 

and three-dimensional spaces. The algorithms to perform the 

numerical experiments are the [11], second order, the [12], 

fourth order, and the [13], second order, in two-dimensions. In 

three-dimensions, one studies the [11], second order, and the 

[13], second order. All schemes are predictor-corrector or 

symmetrical ones. Convergence is accelerated to steady state 

by a spatially variable time step procedure, which has proved 

excellent results as reported by [14-15]. Good results are 

obtained by all models, especially for the matrix model, and 

are reported in this paper.  

 The best result for the two-dimensional case, considering 

each dissipation model, was due to the [3] matrix model 

because it reproduces the exact value of the shock angle in two 

solutions, [11] and [12] schemes, and presents a small error 

with the [13] scheme (< 1.50%). For the three-dimensional 

case, the best dissipation model was the [8] dissipation model 

because it reproduces the exact value in two solutions, [11] 

and [13] algorithms. The Turkel and Vatsa’s matrix model was 

the best in the two-dimensional case, whereas the Mavriplis’ 

model was the best in the three-dimensional case. 

The best scheme was the [12] algorithm in the two-

dimensional case, whereas is the [11] algorithm in the three-

dimensional case. In general, the errors obtained with the 

results were inferior to 2.50%, which is an excellent result 

considering that the schemes are not of high resolution. 
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